實(shí)用文檔>點(diǎn)與圓的位置關(guān)系教案設(shè)計(jì)

          點(diǎn)與圓的位置關(guān)系教案設(shè)計(jì)

          時(shí)間:2024-09-02 23:00:27

          點(diǎn)與圓的位置關(guān)系教案設(shè)計(jì)

          點(diǎn)與圓的位置關(guān)系教案設(shè)計(jì)

          點(diǎn)與圓的位置關(guān)系教案設(shè)計(jì)

            學(xué)習(xí)目標(biāo):1、理解點(diǎn)與圓的位置關(guān)系由點(diǎn)到圓心的距離決定;

            2、理解不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓;

            3、會(huì)畫(huà)三角形的外接圓,熟識(shí)相關(guān)概念

            學(xué)習(xí)過(guò)程

            一、點(diǎn)與圓的位置三種位置關(guān)系

            生活現(xiàn)象:閱讀課本,這一現(xiàn)象體現(xiàn)了平面內(nèi)點(diǎn)與圓的位置關(guān)系. 如圖1所示,設(shè)⊙O的半徑為r,

            A點(diǎn)在圓內(nèi),OA r

            B點(diǎn)在圓上,OB r

            C點(diǎn)在圓外,OC r

            反之,在同一平面上,已知的半徑為r⊙O,和A,B,C三點(diǎn):

            若OA>r,則A點(diǎn)在圓 ;

            若OB<r,則B點(diǎn)在圓 ;

            若OC=r,則C點(diǎn)在圓 。

            二、多少個(gè)點(diǎn)可以確定一個(gè)圓

            問(wèn)題:在圓上的點(diǎn)有 多個(gè),那么究竟多少個(gè)點(diǎn)就可以確定一個(gè)圓呢? 試一試

            畫(huà)圖準(zhǔn)備:

            1、圓的 確定圓的大小,圓 確定圓的位置;

            也就是說(shuō),若如果圓的 和 確定了,

            那么,這個(gè)圓就確定了。

            2、如圖2,點(diǎn)O是線段AB的垂直平分線

            上的任意一點(diǎn),則有OA OB 圖2

            畫(huà)圖:

            1、畫(huà)過(guò)一個(gè)點(diǎn)的圓。

            右圖,已知一個(gè)點(diǎn)A,畫(huà)過(guò)A點(diǎn)的圓.

            小結(jié):經(jīng)過(guò)一定點(diǎn)的圓可以畫(huà) 個(gè)。

            2、畫(huà)過(guò)兩個(gè)點(diǎn)的圓。

            右圖,已知兩個(gè)點(diǎn)A、B,畫(huà)過(guò)同時(shí)經(jīng)過(guò)A、B兩點(diǎn)的圓.

            提示:畫(huà)這個(gè)圓的關(guān)鍵是找到圓心,

            畫(huà)出來(lái)的圓要同時(shí)經(jīng)過(guò)A、B兩點(diǎn),

            那么圓心到這兩點(diǎn)距離 ,可見(jiàn),

            圓心在線段AB的 上。

            小結(jié):經(jīng)過(guò)兩定點(diǎn)的圓可以畫(huà) 個(gè),但這些圓的圓心在線段的 上

            3、畫(huà)過(guò)三個(gè)點(diǎn)(不在同一直線)的圓。

            提示:如果A、B、C三點(diǎn)不在一條直線上,那么經(jīng)過(guò)A、B兩點(diǎn)所畫(huà)的圓的圓心在線段AB的垂直平分線上,

            而經(jīng)過(guò)B、C兩點(diǎn)所畫(huà)的圓的圓心在

            線段BC的垂直平分線上,此時(shí),這

            兩條垂直平分線一定相交,設(shè)交點(diǎn)為O,

            則OA=OB=OC,于是以O(shè)為圓心,

            OA為半徑畫(huà)圓,便可畫(huà)出經(jīng)過(guò)A、B、C

            三點(diǎn)的圓.

            小結(jié):不在同一條直線上的三個(gè)點(diǎn)確定 個(gè)圓.

            三、概括

            我們已經(jīng)知道,經(jīng)過(guò)三角形三個(gè)頂點(diǎn)可以畫(huà)一個(gè)圓,并且只能畫(huà)一個(gè).經(jīng)過(guò)三角形三個(gè)頂點(diǎn)的圓叫做三角形的外接圓(circumcircle).三角形外接圓的圓心叫做這個(gè)三角形的外心(circumcenter).這個(gè)三角形叫做這個(gè)圓的內(nèi)接三角形.三角形的外心就是三角形三條邊的垂直平分線的交點(diǎn).

            如圖:如果⊙O經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),

            則⊙O叫做△ABC的 ,圓心O叫

            做△ABC的 ,反過(guò)來(lái),△ABC叫做

            ⊙O的 。

            △ABC的外心就是AC、BC、AB邊的 交點(diǎn)。

            四、分組練習(xí)

            (A組)

            1、已知⊙O的半徑為4,A為線段PO的中點(diǎn),當(dāng)OP=10時(shí),點(diǎn)A與⊙O的位置關(guān)系為( )

            A.在圓上 B.在圓外 C.在圓內(nèi) D.不確定

            2、任意畫(huà)一個(gè)三角形,然后再畫(huà)這個(gè)三角形的外接圓.

            3、判斷題:

            ①三角形的外心到三邊的距離相等………………( )

            ②三角形的外心到三個(gè)頂點(diǎn)的距離相等。…………( )

            4、三角形的外心在這個(gè)三角形的( )

            A.內(nèi)部 B.外部 C.在其中一邊上 D.以上三種都可能

            5、能過(guò)畫(huà)圖的方法來(lái)解釋上題。

            在下列三個(gè)圓中,分別畫(huà)出內(nèi)接三角形(銳角,直角,鈍角三種三角形)

            6、直角三角形的兩條直角邊分別為5和12,則其外接圓半徑的長(zhǎng)為

            7、若點(diǎn)O是△ABC的外心,∠A=70°,則∠BOC=

            (B組)

            8、一個(gè)點(diǎn)到圓的最小距離為4cm,最大距離為9cm,則該圓的半徑是( )

            A.2.5cm或6.5cm B.2.5cm C. 6.5cm D.5cm或13cm

            9、隨意畫(huà)出四點(diǎn),其中任何三點(diǎn)都不在同一條直線上,是否一定可以畫(huà)一個(gè)圓經(jīng)過(guò)這四點(diǎn)?請(qǐng)?jiān)嚠?huà)圖說(shuō)明.

          【點(diǎn)與圓的位置關(guān)系教案設(shè)計(jì)】相關(guān)文章:

          夢(mèng)圓飛天的教案設(shè)計(jì)08-22

          命題及其關(guān)系數(shù)學(xué)教案設(shè)計(jì)03-20

          數(shù)學(xué)教案:圓的認(rèn)識(shí)02-12

          團(tuán)關(guān)系轉(zhuǎn)出證明02-25

          數(shù)學(xué)教案之確定位置03-20

          讓心飛翔教案設(shè)計(jì)01-24

          教案設(shè)計(jì):破釜沉舟07-19

          《天窗》優(yōu)秀教案設(shè)計(jì)06-08

          《楊氏之子》教案設(shè)計(jì)02-11

          認(rèn)識(shí)南瓜教案設(shè)計(jì)02-11

          用戶協(xié)議
          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  亚洲日韩中文在线精品第一 | 日本高清激情乱一区二区 | 一区二区三区免费在线观看 | 性做久久久久久久免费看 | 亚洲国产午夜站香蕉 | 五月天丁香婷婷深爱综合 |