高三數學下學期復習試題參考

          時間:2024-12-17 12:35:00 維澤 試題 我要投稿
          • 相關推薦

          高三數學下學期復習試題參考

            無論是在學習還是在工作中,我們或多或少都會接觸到練習題,學習需要做題,是因為這樣一方面可以了解你對知識點的掌握,熟練掌握知識點!同時做題還可以鞏固你對知識點的運用!還在為找參考習題而苦惱嗎?下面是小編為大家整理的高三數學下學期復習試題參考,歡迎閱讀,希望大家能夠喜歡。

          高三數學下學期復習試題參考

            高三數學下學期復習試題參考 1

            一、選擇題

            本大題共12小題,每小題5分,共60分.

            1.函數 的定義域是( )

            A.[1,+) B.45,+

            C.45,1 D.45,1

            解析:要使函數有意義,只要

            得01,即45

            答案:D

            2.設a=20.3,b=0.32,c=logx(x2+0.3)(x1),則a,b,c的大小關系是()

            A.a

            C.c

            解析:∵a=20.321=2,且a=20.320=1,1

            ∵x1,c=logx(x2+0.3)logxx2=2. cb.

            答案:B

            3.已知函數f(x)=ln(x+x2+1),若實數a,b滿足f(a)+f(b-1)=0,則a+b等于()

            A.-1 B.0

            C.1 D.不確定

            解析:觀察得f(x)在定義域內是增函數,而f(-x)=ln(-x+x2+1)=ln1x+x2+1=-

            f(x), f(x)是奇函數,則f(a)=-f(b-1)=f(1-b).

            a=1-b,即a+b=1.

            答案:C

            4.已知函數f(x)=-log2x (x0),1-x2 (x0),則不等式f(x)0的解集為()

            A.{x|0

            C.{x|-1-1}

            解析:當x0時,由-log2x0,得log2x0,即0

            當x0時,由1-x20,得-1

            答案:C

            5.同時滿足兩個條件:①定義域內是減函數;②定義域內是奇函數的函數是()

            A.f(x)=-x|x| B.f(x)=x3

            C.f(x)=sinx D.f(x)=lnxx

            解析:為奇函數的是A、B、C,排除D. A、B、C中在定義域內為減函數的只有A.

            答案:A

            6.函數f(x)=12x與函數g(x)= 在區間(-,0)上的單調性為()

            A.都是增函數

            B.都是減函數

            C.f(x)是增函數,g(x)是減函數

            D.f(x)是減函數,g(x)是增函數

            解析:f(x)=12x在x(-,0)上為減函數,g(x)= 在(-,0)上為增函數.

            答案:D

            7.若x(e-1,1),a=lnx,b=2lnx,c=ln3x,則()

            A.a

            C.b

            解析:a=lnx,b=2lnx=lnx2,c=ln3x.

            ∵x(e-1,1),xx2.故ab,排除A、B.

            ∵e-1

            lnx

            答案:C

            8.已知f(x)是定義在(-,+)上的偶函數,且在(-,0]上是增函數,若a=f(log47), ,c=f(0.2-0.6) ,則a、b、c的大小關系是()

            A.c

            C.c

            解析:函數f(x)為偶函數,b=f(log123)=f(log23),c=f(0.2-0.6)=f(50.6).∵50.6log23=log49log47,f(x)在(0,+)上為減函數,f(50.6)

            答案:A

            9.某公司在甲、乙兩地銷售一種品牌車,利潤(單位:萬元)分別為L1=5.06x-0.15x2和 L2=2x,其中x為銷售量(單位:輛),若該公司在這兩地共銷售15輛車,則能獲得的最大利潤為()

            A.45.606萬元 B.45.6萬元

            C.46.8萬元 D.46.806萬元

            解析:設在甲地銷售x輛,則在乙地銷售(15-x)輛,總利潤

            L=L1+L2=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30,

            當x=3.0620.15=10.2時,L最大.

            但由于x取整數,當x=10時,能獲得最大利潤,

            最大利潤L=-0.15102+3.0610+30=45.6(萬元).

            答案:B

            10.若f(x)是定義在R上的偶函數,且滿足f(x+3)=f(x),f(2)=0,則方程f(x)=0在區間(0,6)內解的個數的.最小值是()

            A.5 B.4

            C.3 D.2

            解析:f(5)=f(2+3)=f(2)=0,又∵f(-2)=f(2)=0,f(4)=f(1)=f(-2)=0,

            在(0,6)內x=1,2,4,5是方程f(x)=0的根.

            答案:B

            11.函數f(x)=x+log2x的零點所在區間為()

            A.[0,18] B.[18,14]

            C.[14,12] D.[12,1]

            解析:因為f(x)在定義域內為單調遞增函數,而在四個選項中,只有 f14f120,所以零點所在區間為14,12.

            答案:C

            12.定義在R上的函數f(x)滿足f(x+2)=3f(x),當x[0,2]時,f(x)=x2-2x,則當x[-4,-2]時,f(x)的最小值是()

            A.-19 B.-13

            C.19 D.-1

            解析:f(x+2)=3f(x),

            當x[0,2]時,f(x)=x2-2x,當x=1時,f(x)取得最小值.

            所以當x[-4,-2]時,x+4[0,2],

            所以當x+4=1時,f(x)有最小值,

            即f(-3)=13f(-3+2)=13f(-1)=19f(1)=-19.

            答案:A

            二、填空題:本大題共4個小題,每小題5分,共20分.

            13.若函數f(x)=ax2+x+1的值域為R,則函 數g(x)=x2+ax+1的值域為__________.

            解析:要使f(x)的值域為R,必有a=0.于是g(x)=x2+1,值域為[1,+).

            答案:[1,+)

            14.若f(x)是冪函數,且滿足f(4)f(2)=3,則f12=__________.

            解析:設f(x)=x,則有42=3,解得2=3,=log23,

            答案:13

            15.若方程x2+(k-2)x+2 k-1=0的兩根中,一根在0和1之間,另一根在1和2之間,則實數k的取值范圍是__________.

            解析:設函數f(x)=x2+(k-2)x+2k-1,結合圖像可知,f(0)0,f(1)0,f(2)0.

            即2k-10,1+(k-2)+2k-10,4+2(k-2)+2k-10,解得k12,k23,即1214,

            故實數k的取值范圍是12,23.

            答案:12,23

            16.設函數f(x)=2x (-20),g(x)-log5(x+5+x2) (0

            若f(x)為奇函數,則當0

            解析:由于f(x)為奇函數,當-20時,f(x)=2x有最小值為f(-2)=2-2=14,故當0

            答案:34

            高三數學下學期復習試題參考 2

            一、選擇題

            1.已知{an}為等差數列,若a3+a4+a8=9,則S9=()

            A.24 B.27

            C.15 D.54

            解析 B 由a3+a4+a8=9,得3(a1+4d)=9,即a5=3.則S9=9a1+a92=9a5=27.

            2.在等差數列{an}中,若a4+a6+a8+a10+a12=120,則a9-13a11的值為()

            A.14 B.15

            C.16 D.17

            解析 C ∵a4+a6+a8+a10+a12=120,5a8=120,a8=24,a9-13a11=(a8+d)

            -13(a8+3d)=23a8=16.

            3.已知{an}是由正數組成的等比數列,Sn表示{an}的前n項的和,若a1=3,a2a4=144,則S5的值是()

            A.692 B.69

            C.93 D.189

            解析 C 由a2a4=a23=144得a3=12(a3=-12舍去),又a1=3,各項均為正數,則

            q=2.所以S5=a11-q51-q=31-321-2=93.

            4.在數列1,2,7,10,13,4,中,219是這個數列的第幾項()

            A.16 B.24

            C.26 D.28

            解析 C 因為a1=1=1,a2=2=4,a3=7,a4=10,a5=13,a6=4=16,

            所以an=3n-2.令an=3n-2=219=76,得n=26.故選C.

            5.已知等差數列的前n項和為Sn,若S130,S120,則在數列中絕對值最小的項為()

            A.第5項 B.第6項

            C.第7項 D.第8項

            解析 C ∵S130,a1+a13=2a70,又S120,

            a1+a12=a6+a70,a60,且|a6||a7|.故選C.

            6.122-1+132-1+142-1++1n+12-1的值為()

            A.n+12n+2 B.34-n+12n+2

            C.34-121n+1+1n+2 D.32-1n+1+1n+2

            解析 C ∵1n+12-1=1n2+2n=1nn+2=121n-1n+2,

            Sn=121-13+12-14+13-15++1n-1n+2

            =1232-1n+1-1n+2=34-121n+1+1n+2.

            7.正項等比數列{an}中,若log2(a2a98)=4,則a40a60等于()

            A.-16 B.10

            C.16 D.256

            解析 C 由log2(a2a98)=4,得a2a98=24=16,

            則a40a60=a2a98=16.

            8.設f(n)=2+24+27+210++23n+10(nN),則f(n)=()

            A.27(8n-1) B.27(8n+1-1)

            C.27(8n+3-1) D.27(8n+4-1)

            解析 D ∵數列1,4,7,10,3n+10共有n+4項,f(n)=2[1-23n+4]1-23=27(8n+4-1).

            9.△ABC中,tan A是以-4為第三項,-1為第七項的等差數列的公差,tan B是以12為第三項,4為第六項的等比數列的公比,則該三角形的形狀是()

            A.鈍角三角形 B.銳角三角形

            C.等腰直角三角形 D.以上均錯

            解析 B 由題意 知,tan A=-1--47-3=340.

            又∵tan3B=412=8,tan B=20, A、B均為銳角.

            又∵tan(A+B)=34+21-342=-1120,A+B為鈍角,即C為銳角,

            △ABC為銳角三角形.

            10.在等差數列{an}中,前n項和為Sn=nm,前m項和Sm=mn,其中mn,則Sm+n的值()

            A.大于4 B.等于4

            C.小于4 D.大于2且小于4

            解析 A 由題意可設Sk=ak2+bk(其中k為正整數),

            則an2+bn=nm,am2+bm=mn,解得a=1mn,b=0,Sk=k2mn,

            Sm+n=m+n2mn4mnmn=4.

            11.等差數列{an}的前n項和為Sn(n=1,2,3,),若當首項a1和公差d變化時,a5+a8+ a11是一個定值,則下列選項中為定值的是()

            A.S17 B.S18

            C.S15 D.S14

            解析 C 由a5+a8+a11=3a1+21d=3(a1+7d)=3a8是定值,可知a8是定值.所以

            S15=15a1+a152=15a8是定值.

            12.數列{an}的通項公式an=1nn+1,其前n項和為910,則在平面直角坐標系中,直線(n+1)x+y+n=0在y軸上的截距為()

            A.-10 B.-9

            C.10 D.9

            解析 B ∵an=1n-1n+1, Sn=1-12+12-13++1n-1n+1=nn+1,

            由nn+1=910,得n=9,直線方程為10x+y+9=0,其在y軸上的截距為-9.

            二、填空題

            13.設Sn是等差 數列{an}(nN*)的前n項和,且a1=1,a4=7,則S5=________.

            解析 ∵a1=1,a4=7,d=7-14-1=2.

            S5=5a1+55-12d=51+5422=25.

            【答案】 25

            14.若數列{an}滿足關系a1=3,an+1=2an+1,則該數列的通項公式為________.

            解析 ∵an+1=2an+1,an+1+1=2(an+1),

            數列{an+1}是首項為4,公比為2的等比數列,

            an+1=42n-1,an=2n+1-1.

            【答案】 an=2n+1-1

            15.(20 11北京高考)在等比數列{an}中,若a1=12,a4=-4,則公比q=________;|a1|+|a2|++|an|=________.

            解析 ∵數列{an}為等比數列,

            a4=12q3=-4,q=-2;an=12(-2)n-1, |an|=122n-1,

            由等比數列前n項和公式得 |a1|+|a2|++|an|=121-2n1-2=-12+122n=2n-1-12.

            【答案】 -2 2n-1-12

            16.給定:an=logn+1(n+2)(nN*),定義使a1a2ak為整數的數k(kN*)叫做數列{an}的 企盼數,則區間[1,2 013]內所有企盼數的和M=________.

            解析 設a1a2ak=log23log34logk(k+1)logk+1(k+2)=log2(k+2)為整數m,

            則k+2=2m,

            k=2m-2.

            又12 013,

            12 013,

            210.

            區間[1,2 013]內所有企盼數的和為

            M=(22-2)+(23-2)++(210-2)

            =(22+23++210)-18

            =221-291-2-18

            =2 026.

            【答案】 2 026

            三、解答題

            17.(10分)已知等差數列{an}的前三項為a,4,3a,前k項的和Sk=2 550,求通項公式an及k的`值.

            解析 法一:由題意知,

            a1=a,a2=4,a3=3a,Sk=2 550.

            ∵數列{an}是等差數列,

            a+3a=24,

            a1=a=2,公差d=a2-a1=2,

            an=2+2(n-1)=2n.

            又∵Sk=ka1+kk-12d,

            即k2+kk-122=2 550,整理,

            得k2+k-2 550=0,

            解得k1=50, k2=-51(舍去),

            an=2n,k=50.

            法二:由法一,得a1=a=2,d=2,

            an=2+2(n-1)=2n,

            Sn=na1+an2=n2+2n2=n 2+n.

            又∵Sk=2 550,

            k2+k=2 550,

            即k2+k-2 550=0,

            解得k=50(k=-51舍去).

            an=2n,k=50.

            18.(12分)(1)已知數列{an}的前n項和Sn=3n2-2n,求數列{an}的通項公式;新課標

            (2)已知數列{an}的前n項和為Sn=3+2n,求an.

            解析 (1)n=1時,a1=S1=1.

            當n2時,

            an=Sn-Sn-1

            =3n2-2n-3(n-1)2+2(n-1)

            = 6n-5,

            因為a1也適合上式,

            所以通項公式為an=6n-5.

            (2)當n=1時,a1=S1=3+2=5.

            當n2時,

            an=Sn-Sn-1=3+2n-(3+2n-1)=2n-2n-1=2n-1.

            因為n=1時,不符合an=2n-1,

            所以數列{an}的通項公式為

            an=5,n=1,2n-1, n2.

            19.(12分)有10臺型號相同的聯合收割機,收割一片土地上的莊稼.若同時投入至收割完畢需用24小時,但現在它們是每隔相同的時間依次投入工作的,每一臺投入工作后都一直工作到莊稼收割完畢.如果第一臺收割機工作的時間是最后一臺的5倍.求用這種收割方法收割完這片土地上的莊稼需用多長時間?

            解析 設從第一臺投入工作起,這10臺收割機工作的時間依次為a1,a2,a3,a10小時,依題意,{an}組成一個等差數列,每臺收割機每小時工作效率是1240,且有

            a1240+a2240++a10240=1,①a1=5a10, ②

            由①得,a1+a2++a10=240.

            ∵數列{an}是等差數列,

            a1+a10102=240,即a1+a10=48.③

            將②③聯立,解得a1=40(小時),即用這種方 法收割完這片土地上的莊稼共需40小時.

            20.(12分)已知數列{an}滿足a1=5,a2=5,an+1=an+6an-1.

            (1)求證:{an+1+2an}是等比數列;

            (2)求數列{an}的通項公式;

            (3)設3nbn=n(3n-an),求|b1|+|b2|++|bn|.

            解析 (1)∵an+1=an+6an-1,

            an+1+2an=3an+6an-1=3(an+2an-1).

            又a1=5,a2=5,

            a2+2a1=15,

            an+an+10,

            an+1+2anan+2an-1=3,

            數列{an+1+2an}是以15為首項,

            3為公比的等比數列.

            (2)由(1)得an+1+2an=153n-1=53n,

            即an+1=-2an+53n,

            an+1-3n+1=-2(an-3n).

            又∵a1-3=2,

            an-3n0,

            {an-3n}是以2為首項,-2為公比的等比數列.

            an-3n=2(-2)n-1,

            即an=2(-2)n-1+3n(nN*).

            (3)由(2)及3nbn= n(3n-an),可得

            3nbn=-n(an-3n)=-n[2(-2)n-1]=n(-2)n,

            bn=n-23n,

            |bn|=n23n.

            Tn=|b1|+|b2|++|bn|

            =23+2232++n23n,①

            ①23,得

            23Tn=232+2233++(n-1)23n+n23n+1,②

            ①-②得

            13Tn=23+232++23n-n23n+1

            =2-323n+1-n23n+1

            =2-(n+3)23n+1,

            Tn=6-2(n+3)23n.

            21.(12分)已知函數f(x)滿足f(x+y)=f(x)f(y)且f(1)=12.

            (1)當nN*時,求f(n)的表達式;

            (2)設an=nf(n),nN*,求證:a1+a2+a3++an

            (3)設bn=(9-n)fn+1fn,nN*,Sn為{bn}的前n項和,當Sn最大時,求n的值.

            解析 (1)令x=n,y=1,

            得f(n+1)=f(n)f(1)=12f(n),

            {f(n)}是首項為12,公比為12的等比數列,

            即f(n)=12n.

            (2)設Tn為{an}的前n項和,

            ∵an=nf(n)=n12n,

            Tn=12+2122+3123++n12n,

            12Tn=122+2123+3124++(n-1)12n+n12n+1,

            兩式相減得

            12Tn=12+122++12n-n12n+1,

            整理,得Tn=2-12n-1-n12n2.

            (3)∵f(n)=12n,

            bn=(9-n)fn+1fn

            =(9-n)12n+112n=9-n2,

            當n8時,bn當n=9時,bn=0;

            當n9時,bn0.

            當n=8或9時,Sn取到最大值.

            22. (12分)設數列{an}滿足a1+3a2+32a3++3n-1an=n3(nN*) .

            (1)求數列{an}的通項;

            (2)設bn=nan,求數列{bn}的前n項和Sn.

            解析 (1)∵a1+3a2+32a3++3n-1an=n3,①

            a1=13,

            a1+3a2+32a3++3n-2an-1=n-13(n2),②

            ①-②得3n-1an=n3-n-13=13(n2),

            化簡得an=13n(n2).

            顯然a1=13也滿足上式,故an=13n(nN*).

            (2)由①得bn=n3n.

            于是Sn=13+232+333++n3n,③

            3Sn=132+233+334++n3n+1,④

            ③-④得-2Sn=3+32+33++3n-n3n+1,

            即-2Sn=3-3n+11-3-n3n+1,

            Sn=n23n+1-143n+1+34.

          【高三數學下學期復習試題參考】相關文章:

          高三數學的復習教案03-19

          數學測試題大全參考03-08

          初三數學復習工作小結參考09-20

          高三數學復習計劃01-14

          高三數學排列復習教案07-21

          高三數學復習教案大全08-11

          高三數學復習意見指導10-04

          小學數學測試題及答案參考04-12

          關于小升初數學追及問題復習試題01-23

          高等數學下冊復習重點總結參考10-07

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  午夜少妇高潮在线看 | 久久伊人精品波多野结衣 | 日本一区二区三区精品无卡 | 欧美国产亚洲日韩在线二区 | 亚洲一级高清在线观看 | 最新在线精品国自产一区 |