基本初等函數的導數公式及導數運算法則測試題

          時間:2021-03-27 10:36:33 試題 我要投稿

          基本初等函數的導數公式及導數運算法則測試題

            一、選擇題

          基本初等函數的導數公式及導數運算法則測試題

            1.函數y=(x+1)2(x-1)在x=1處的導數等于()

            A.1 B.2

            C.3 D.4

            [答案] D

            [解析] y=[(x+1)2](x-1)+(x+1)2(x-1)

            =2(x+1)(x-1)+(x+1)2=3x2+2x-1,

            y|x=1=4.

            2.若對任意xR,f(x)=4x3,f(1)=-1,則f(x)=()

            A.x4 B.x4-2

            C.4x3-5 D.x4+2

            [答案] B

            [解析] ∵f(x)=4x3.f(x)=x4+c,又f(1)=-1

            1+c=-1,c=-2,f(x)=x4-2.

            3.設函數f(x)=xm+ax的導數為f(x)=2x+1,則數列{1f(n)}(nN*)的前n項和是()

            A.nn+1 B.n+2n+1

            C.nn-1 D.n+1n

            [答案] A

            [解析] ∵f(x)=xm+ax的導數為f(x)=2x+1,

            m=2,a=1,f(x)=x2+x,

            即f(n)=n2+n=n(n+1),

            數列{1f(n)}(nN*)的前n項和為:

            Sn=112+123+134+…+1n(n+1)

            =1-12+12-13+…+1n-1n+1

            =1-1n+1=nn+1,

            故選A.

            4.二次函數y=f(x)的圖象過原點,且它的導函數y=f(x)的圖象是過第一、二、三象限的一條直線,則函數y=f(x)的圖象的頂點在()

            A.第一象限 B.第二象限

            C.第三象限 D.第四象限

            [答案] C

            [解析] 由題意可設f(x)=ax2+bx,f(x)=2ax+b,由于f(x)的圖象是過第一、二、三象限的一條直線,故2a0,b0,則f(x)=ax+b2a2-b24a,

            頂點-b2a,-b24a在第三象限,故選C.

            5.函數y=(2+x3)2的導數為()

            A.6x5+12x2 B.4+2x3

            C.2(2+x3)2 D.2(2+x3)3x

            [答案] A

            [解析] ∵y=(2+x3)2=4+4x3+x6,

            y=6x5+12x2.

            6.(2010江西文,4)若函數f(x)=ax4+bx2+c滿足f(1)=2,則f(-1)=()

            A.-1 B.-2

            C.2 D.0

            [答案] B

            [解析] 本題考查函數知識,求導運算及整體代換的思想,f(x)=4ax3+2bx,f(-1)=-4a-2b=-(4a+2b),f(1)=4a+2b,f(-1)=-f(1)=-2

            要善于觀察,故選B.

            7.設函數f(x)=(1-2x3)10,則f(1)=()

            A.0 B.-1

            C.-60 D.60

            [答案] D

            [解析] ∵f(x)=10(1-2x3)9(1-2x3)=10(1-2x3)9(-6x2)=-60x2(1-2x3)9,f(1)=60.

            8.函數y=sin2x-cos2x的導數是()

            A.22cos2x- B.cos2x-sin2x

            C.sin2x+cos2x D.22cos2x+4

            [答案] A

            [解析] y=(sin2x-cos2x)=(sin2x)-(cos2x)

            =2cos2x+2sin2x=22cos2x-4.

            9.(2010高二濰坊檢測)已知曲線y=x24-3lnx的一條切線的斜率為12,則切點的橫坐標為()

            A.3 B.2

            C.1 D.12

            [答案] A

            [解析] 由f(x)=x2-3x=12得x=3.

            10.設函數f(x)是R上以5為周期的可導偶函數,則曲線y=f(x)在x=5處的.切線的斜率為()

            A.-15 B.0

            C.15 D.5

            [答案] B

            [解析] 由題設可知f(x+5)=f(x)

            f(x+5)=f(x),f(5)=f(0)

            又f(-x)=f(x),f(-x)(-1)=f(x)

            即f(-x)=-f(x),f(0)=0

            故f(5)=f(0)=0.故應選B.

            二、填空題

            11.若f(x)=x,(x)=1+sin2x,則f[(x)]=_______,[f(x)]=________.

            [答案] 2sinx+4,1+sin2x

            [解析] f[(x)]=1+sin2x=(sinx+cosx)2

            =|sinx+cosx|=2sinx+4.

            [f(x)]=1+sin2x.

            12.設函數f(x)=cos(3x+)(0<),若f(x)+f(x)是奇函數,則=________.

            [答案] 6

            [解析] f(x)=-3sin(3x+),

            f(x)+f(x)=cos(3x+)-3sin(3x+)

            =2sin3x++56.

            若f(x)+f(x)為奇函數,則f(0)+f(0)=0,

            即0=2sin+56,+56=kZ).

            又∵(0,),6.

            13.函數y=(1+2x2)8的導數為________.

            [答案] 32x(1+2x2)7

            [解析] 令u=1+2x2,則y=u8,

            yx=yuux=8u74x=8(1+2x2)74x

            =32x(1+2x2)7.

            14.函數y=x1+x2的導數為________.

            [答案] (1+2x2)1+x21+x2

            [解析] y=(x1+x2)=x1+x2+x(1+x2)=1+x2+x21+x2=(1+2x2)1+x21+x2.

            三、解答題

            15.求下列函數的導數:

            (1)y=xsin2x;(2)y=ln(x+1+x2);

            (3)y=ex+1ex-1;(4)y=x+cosxx+sinx.

            [解析] (1)y=(x)sin2x+x(sin2x)

            =sin2x+x2sinx(sinx)=sin2x+xsin2x.

            (2)y=1x+1+x2(x+1+x2)

            =1x+1+x2(1+x1+x2)=11+x2 .

            (3)y=(ex+1)(ex-1)-(ex+1)(ex-1)(ex-1)2=-2ex(ex-1)2 .

            (4)y=(x+cosx)(x+sinx)-(x+cosx)(x+sinx)(x+sinx)2

            =(1-sinx)(x+sinx)-(x+cosx)(1+cosx)(x+sinx)2

            =-xcosx-xsinx+sinx-cosx-1(x+sinx)2.

            16.求下列函數的導數:

            (1)y=cos2(x2-x); (2)y=cosxsin3x;

            (3)y=xloga(x2+x-1); (4)y=log2x-1x+1.

            [解析] (1)y=[cos2(x2-x)]

            =2cos(x2-x)[cos(x2-x)]

            =2cos(x2-x)[-sin(x2-x)](x2-x)

            =2cos(x2-x)[-sin(x2-x)](2x-1)

            =(1-2x)sin2(x2-x).

            (2)y=(cosxsin3x)=(cosx)sin3x+cosx(sin3x)

            =-sinxsin3x+3cosxcos3x=3cosxcos3x-sinxsin3x.

            (3)y=loga(x2+x-1)+x1x2+x-1logae(x2+x-1)=loga(x2+x-1)+2x2+xx2+x-1logae.

            (4)y=x+1x-1x-1x+1log2e=x+1x-1log2ex+1-x+1(x+1)2

            =2log2ex2-1.

            17.設f(x)=2sinx1+x2,如果f(x)=2(1+x2)2g(x),求g(x).

            [解析] ∵f(x)=2cosx(1+x2)-2sinx2x(1+x2)2

            =2(1+x2)2[(1+x2)cosx-2xsinx],

            又f(x)=2(1+x2)2g(x).

            g(x)=(1+x2)cosx-2xsinx.

            18.求下列函數的導數:(其中f(x)是可導函數)

            (1)y=f1x;(2)y=f(x2+1).

            [解析] (1)解法1:設y=f(u),u=1x,則yx=yuux=f(u)-1x2=-1x2f1x.

            解法2:y=f1x=f1x1x=-1x2f1x.

            (2)解法1:設y=f(u),u=v,v=x2+1,

          【基本初等函數的導數公式及導數運算法則測試題】相關文章:

          導數切線斜率公式10-11

          導數的應用專題說課稿11-04

          數學說課稿《導數的概念》04-02

          導數的概念教學設計(精選5篇)05-20

          洛必達法則公式及條件10-12

          行列式運算法則10-12

          高中數學復數運算公式有哪些10-12

          二次函數測試題的整理08-20

          物質的量公式及介紹10-12

          關于對數函數及其性質測試題08-26

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  又大又黄又爽视频一区二区 | 亚洲精品一本中文字幕 | 亚洲精品在线永久 | 亚洲日韩高清在线亚洲专区 | 午夜一区二区免费福利麻豆 | 中文字幕乱在线伦视频日韩 |